If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7y^2-7=0
a = 7; b = 0; c = -7;
Δ = b2-4ac
Δ = 02-4·7·(-7)
Δ = 196
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{196}=14$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-14}{2*7}=\frac{-14}{14} =-1 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+14}{2*7}=\frac{14}{14} =1 $
| X2+y2=25 | | 1-(1/x^2)=2x-5 | | F(5)=8x+3 | | 2x(x-13)=26 | | 10(s-4)=-81 | | 10(s-4)=81 | | X-12/y=18 | | x-2/10=8/5 | | 2x²+6x-56=0 | | 73(q−7)=27 | | 23b+5=20-b | | 10x+15-17=42 | | -2/5=-x/45 | | x-3/20=1/2 | | 5=1/4(q^2) | | 2(x-5/2)^2-15/2=0 | | (x+8)^2=-49 | | 1/6-2x=-2x+7/6 | | 4x-1=13x-47 | | -9/45=-x/45 | | 0=(2x^2)-5x-512 | | x^2+12x-33=3x+3# | | (2^3)+11x^2+5x=118 | | x^2+12x-33=3x+3 | | 20=q^2 | | 6x-4(x-10)=50 | | (7/3x+1)-(18x/3x+1)=-6 | | 35.2x-369600=27.2Y-316800 | | (7x+6)/8+(2x-8)/3=-5 | | F(x)=3x-10F(x)=20 | | b/11-8b/11=42/11 | | 1/9(4t-7)=10/9t-t+7/18 |